
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3174184, IEEE Internet of
Things Journal

1

PPAQ: Privacy-Preserving Aggregate Queries for
Optimal Location Selection in Road Networks

Songnian Zhang, Suprio Ray, Member, IEEE, Rongxing Lu, Fellow, IEEE, Yandong Zheng, Yunguo Guan,
and Jun Shao, Senior Member, IEEE

Abstract—Aggregate Nearest Neighbor (ANN) query, which
can find an optimal location with the smallest aggregate distance
to a group of query users’ locations, has received considerable
attention and been practically useful in many real-world location-
based applications. Nevertheless, query users still hesitate to
use these applications due to privacy concerns, as there is a
worrisome that the location-based service (LBS) providers may
abuse their locations after collecting them. In this paper, to
tackle this issue, we propose a novel privacy-preserving aggregate
query (PPAQ) scheme to select an optimal location for query
users in road networks. Specifically, we first analyze the problem
of the ANN query in road networks and identify two basic
operations, i.e., addition and comparison, in the query. Then,
we carefully design efficient addition and comparison circuits
to securely add and compare two bit-based inputs, respectively.
With these two secure circuits, we propose our PPAQ scheme,
which can simultaneously protect the users’ locations, query
results, and access patterns from leaking. Detailed security
analysis shows that our proposed scheme is indeed privacy-
preserving. In addition, extensive performance evaluations are
conducted, and the results indicate that our proposed scheme
has an acceptable efficiency for non-real-time applications.

Index Terms—Aggregate queries, Optimal location, Privacy
preservation, Road networks, Location-based service (LBS)

I. INTRODUCTION

Aggregate nearest neighbor (ANN) query is one of the clas-
sic problems due to its quite wide range of applications [1]–
[8]. Especially in road networks [5]–[8], ANN query has huge
practical significance and demand for LBS providers to select
the optimal point in road networks for a group of users. A
representative example of ANN query is illustrated as follows.

Example 1 (Motivation). An LBS provider, e.g., Yelp, who
owns the road network information, e.g., locations of junctions
and points of interest (POI), offers the ANN query services
for users. Fig. 1 shows a road network with five junctions
{v1, v2, · · · , v5} and three POIs {p1, p2, p3}. Assume a group
of colleagues want to find a restaurant, which should have the
minimum aggregated distance to all group members, to have
dinner on the weekend. In Fig. 1, we take two query users as
an example {q1, q2}, and they can launch the ANN query by
separately sending their own locations to the service provider.
After receiving locations, the service provider performs the

S. Zhang, S. Ray, R. Lu, Y. Zheng and Y. Guan are with the Fac-
ulty of Computer Science, University of New Brunswick, Fredericton, NB
E3B 5A3, Canada (e-mail: szhang17@unb.ca, sray@unb.ca, rlu1@unb.ca,
yzheng8@unb.ca, yguan4@unb.ca).

J. Shao is with School of Computer and Information Engineer-
ing, Zhejiang Gongshang University, Hangzhou, 310018, China (e-mail:
chn.junshao@gmail.com).

ANN query to select the optimal restaurant and distribute it
to all colleagues in the group.

In the above example, if the group of colleagues want to
retrieve a restaurant with the minimum total distance, the ANN
query will return p2 as the optimal point since it has the
minimum sum distance. While if they hope to find a restaurant
minimizing the maximum distance for every member, p1 will
be selected. See Section III-A for the formal definition of
the ANN queries in a road network. Hereinafter, we will use
“location” and “point” interchangeably.

2 6

1
1

32

3 5

4 3

3

!!

!"

!#

"! ""

#!

#" ##

#$

#%

"! ""
7 7
8 2
4 9

Sum Max
14 7
10 8
13 9

!!
!"
!#

Fig. 1. An example of ANN query in a road network

However, since the query users need to provide their loca-
tions to the service providers when enjoying the ANN query
services, they may hesitate to use such services due to privacy
concerns. As reported in [9], the disclosure of locations indeed
incurs serious personal safety threats. Therefore, it is impera-
tive to preserve the location privacy of users when populating
the ANN query services in road networks. Unfortunately, many
previously reported works [5]–[8] on ANN queries in road
networks focused on improving the query performance over
plaintexts and did not consider the privacy issues. Though
the works in [10]–[12] exploited the problem of privacy-
preserving ANN queries, there still exist privacy issues in
these techniques. In [10], a cloak-based technique is adopted
to protect users’ locations, and the service providers return a
super-set of the query result to the query users. It is clear that
the approach cannot fully protect the locations of users and
query results since service providers know their approximate
locations. Regarding [11], the query users can perform group
kNN queries by using the secure multiparty computation tech-
nique. Although it can protect users’ locations, this approach
leaks the query result to service providers. Recently, the work
in [12] proposed a privacy-preserving ANN query scheme
by combining the dummy technique and Paillier encryption.
However, when a query user launches multiple queries in a
fixed location, e.g., at home, the service provider may infer or
narrow down the range of the user’s location by intersecting

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3174184, IEEE Internet of
Things Journal

2

the location lists that include the dummy location and user’s
actual location.

In this paper, we aim to propose a fully privacy-preserving
ANN query (PPAQ) scheme in road networks, which can
simultaneously preserve the privacy of users’ locations, the
query result, and access patterns [13] while returning the exact
query result. Note that the privacy of query results and access
patterns are also crucial since leaking them is equivalent to
leaking users’ locations if the service providers know the
selected location or which POI is selected as the optimal
location. In addition, our proposed scheme should guarantee
the privacy of the user’s location no matter how many times
the user queries at the same location. To achieve them, we
employ a lightweight symmetric homomorphic encryption
(SHE) [14] scheme as the cryptographic primitive to encrypt
users’ locations. It is worth noting that SHE will lower the data
utility, especially for the operations of comparison and equality
tests. Although a two-server model can easily achieve these
operations over encrypted data [15]–[17], it is still challenging
to practically implement them over a single-server model. To
tackle it, we carefully devise a bit-based secure comparison
scheme to obtain the order relation of two values. Meanwhile,
a novel matching approach is also proposed to select the equal
value in a given set with the encrypted value without leaking
the selected value. Furthermore, our proposed scheme can hide
access patterns in a single server, which prevents the service
provider from knowing the selected POI. Specifically, the main
contribution of this paper is three-fold as follows.
• First, we analyze the problem of ANN queries in road

networks and identify two basic operations: addition and
comparison. Correspondingly, we propose secure addition and
secure comparison circuits to respectively perform these two
operations over ciphertexts in a single-server model. Note
that, when designing the secure comparison circuit, we also
extend the SHE scheme to support dividing a value by 2 over
encrypted data, which significantly makes SHE more practical.
• Second, based on the above secure circuits, we propose

our privacy-preserving aggregate query (PPAQ) scheme to find
the optimal location in road networks while preserving the
privacy of users’ locations, query results, and access patterns
simultaneously. To the best of our knowledge, we are the first
to consider the fully privacy-preserving ANN queries in road
networks to find the optimal location.
• Third, we formally analyze the security of our proposed

scheme and demonstrate that our PPAQ scheme can indeed
achieve our privacy requirements. Furthermore, we conduct
extensive experiments to evaluate the performance of our
proposed secure circuits and PPAQ scheme, and the results
show that our PPAQ scheme has an acceptable efficiency for
non-real-time applications.

The rest of this paper is organized as follows. In Section II,
we introduce our system model, security model and design
goal. Then, we review our preliminaries in Section III. After
that, we present our proposed scheme in Section IV, followed
by security analysis and performance evaluation in Section V
and Section VI, respectively. Finally, we discuss some related
works in Section VII and draw our conclusion in Section VIII.

II. MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

A. System Model
In our system model, we consider a typical and practical

client-server model, which mainly consists of two types of
entities: a location-based services provider LSP , a group of
users U = {u1, u2, · · · , um}, as shown in Fig. 2.

Location-based
Services Provider

User !User 1Initiator

1.Task & User IDs

1.Task ID

2.User ! Location
3.Optim

al Location

1.Task ID

4.Optimal Location

2.User 1
Location

! = 2,⋯ ,&

Fig. 2. System model under consideration

Location-based Services Provider LSP: In our system
model, LSP is a real-world service provider company, e.g.,
Yelp, who can provide location-based services to users. LSP
deploys servers to interact with its client apps that have
been installed in users’ mobile phones. Meanwhile, LSP
is equipped with enriched spatial databases, including road
networks and business location information, for example, the
locations of restaurants.

Users U = {u1, u2, · · · , um}: In our system, some users at
different locations, who want to obtain the common optimal
location of interest, initially form a virtual group. In Fig. 2,
we assume there are m users, i.e., m ≥ 2, in a group.
The users in the group can provide their locations to LSP
through the installed app (here, we assume all users have
installed LSP’s app and have registered themselves). With
the received locations, LSP can perform the ANN queries in
road networks [5] to find the optimal location and return it to
the group of users. For the ease of description, hereafter, we
denote u1 as an initiator in the group, who is responsible for
sending a task request to LSP , receiving the selected optimal
location from LSP , and distributing the location to other users
in the group. Specifically, u1 first sends a task generation
request to LSP , including the identity information (id) of
other users. Upon receiving the query, LSP generates a unique
task id tid for the request and disseminates it to all users in the
group. Each user then responds his/her location together with
the received tid to LSP . After receiving all users’ responses,
LSP chooses an optional meeting location and forwards it to
the initiator u1. After receiving the optimal meeting location,
ui forwards it to other group users.

B. Security Model
In our security model, we consider all users U to be

honest, i.e., they will honestly report location information

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3174184, IEEE Internet of
Things Journal

3

and task id to LSP . For the initiator u1, he/she honestly
distributes the received optimal location to other users. This
is reasonable since all users expect to correctly obtain an
optimal location and have no motivation to deviate from the
purpose. However, due to the sensitive nature of personal data,
users do not want LSP to know their locations or trajectories.
For LSP , we assume it is semi-honest [18], i.e., LSP will
faithfully follow the protocol to select the optimal location
(performing aggregate nearest neighbor queries) for users but
may be curious to learn the location information of users. From
our system model, we know that LSP receives the report
locations from users and finds the optimal location, which
reveals the potential location of users. As a result, in this
work, the privacy threats are from semi-honest LSP , who
may attempt to obtain: i) query users’ location information;
ii) the selected optimal location, in the process of performing
ANN queries. Note that, since this work mainly focuses on
secure computation techniques, other active attacks, e.g., data
poisoning and modification, are beyond the scope of this paper
and will be discussed in our future work.

C. Design Goal

Under the above system model and security model, we
aim to design a privacy-preserving aggregate nearest neighbor
query scheme for selecting optimal location in road networks.
In particular, the following objectives should be attained.
• Preserving Users’ Location Privacy: The basic require-

ment of our proposed scheme is to preserve the location
privacy of users, i.e., the location information of users
should be always kept secret from LSP .

• Preserving Optimal Location Privacy: The selected opti-
mal location should also be kept secret from LSP , which
implies that we need to hide access patterns in the process
of finding optimal location, i.e., LSP does not know
which location has been selected as the optimal one.

III. PRELIMINARIES

In this section, we first state the problem of the aggregate
nearest neighbor queries in road networks. Then, we recall
a symmetric homomorphic encryption (SHE) scheme, which
serves as the building block of our proposed scheme.

A. Aggregate Nearest Neighbor Queries in Road Networks

The aggregate nearest neighbor (ANN) query in road net-
works is a classic problem and has been used to find the
optimal location or point of interest in road networks, which
minimizes an aggregate distance function with respect to a set
of query points [5]. Before delving into the ANN query, we
first define an aggregate network distance function.

Definition 1 (Aggregate Network Distance Function). Given
a set of query points Q = {q1, q2, · · · , qm} and a point p
in a road network, the aggregate network distance function F
is monotonically increasing and can compute the aggregate
distance from p to Q:

F(p,Q) = F(d(q1, p), d(q2, p), · · · , d(qm, p)), (1)

where d(qt, p), t ∈ [1,m], is the shortest distance between p

and qt along a given road network.

Generally, F is comprised of two basic functions sum and
max [5], [7], in which sum indicates the total distance from p

to all query points Q, while max means the maximum distance
between p and Q.

Definition 2 (Aggregate Nearest Neighbor Queries in Road
Networks). Given Q and a set of data points P =
{p1, p2, · · · , pn} in a road network, the aggregate nearest
neighbor queries can return an optimal point po ∈ P that
has a minimal network distance, i.e., there does not exist
pi ∈ P/{po} such that F(pi,Q) < F(po,Q).

B. Symmetric Homomorphic Encryption (SHE)

SHE is a lightweight symmetric homomorphic encryption
that can support homomorphic addition and multiplication. It
was first proposed in [19] and proved to be IND-CPA secure
in [14]. Concretely, SHE consists of three algorithms, namely
i) key generation KeyGen(); ii) encryption Enc(); and iii)
decryption Dec(), as follows.
• KeyGen(k0, k1, k2): Given three security parameters
{k0, k1, k2} satisfying k1 � k2 < k0, the algorithm first
chooses two large prime numbers p, q with |p| = |q| = k0 and
sets N = pq. Then, it generates the secret key sk = (p,L),
where L is a random number with |L| = k2, and the public
parameter pp = (k0, k1, k2,N). Besides, the algorithm sets
the basic message space M = [−2k1−1, 2k1−1).
• Enc(sk,m): On input of a secret key sk and a message

m ∈ M, the encryption algorithm outputs the ciphertext
E(m) = (rL + m)(1 + r′p) mod N , where r ∈ {0, 1}k2
and r′ ∈ {0, 1}k0 are random numbers.
• Dec(sk,E(m)): Taking the secret key sk and a ciphertext

E(m) as inputs, the decryption algorithm recovers a message
m′ = (E(m) mod p) mod L = (rL+m) mod L. If m′ <
L
2 , it indicates m ≥ 0 and m = m′. Otherwise, m < 0 and
m = m′ − L.

SHE satisfies the homomorphic addition and multipli-
cation properties as follows: i) Homomorphic addition-I:
E(m1) + E(m2) mod N → E(m1 + m2); ii) Homomorphic
multiplication-I: E(m1) · E(m2) mod N → E(m1 · m2);
iii) Homomorphic addition-II: E(m1) + m2 mod N →
E(m1 +m2); iv) Homomorphic multiplication-II: E(m1) ·m2

mod N → E(m1 ·m2) when m2 > 0.
SHE encryption under public key setting. In order to

realize the SHE encryption under public key setting, we take
sk = (p,L) as the private key, and use sk to generate two
ciphertexts E(0)1, E(0)2 of 0 with different random numbers,
and set the public key pk = {E(0)1,E(0)2, pp}. In such a way,
one can use the above homomorphic properties to encrypt a
message m ∈M by the following

E(m) = m+ r1 · E(0)1 + r2 · E(0)2 mod N (2)

where r1, r2 ∈ {0, 1}k2 are two random numbers. Note that
the encryption in Eq. (2) was proven as IND-CPA secure [20].

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

4

IV. OUR PROPOSED PPAQ SCHEME

In this section, we first analyze the problem of ANN query
over plaintexts and extract ANN query’s two basic operations.
Then, we design secure circuits as building blocks to deal with
the two basic operations over ciphertexts. After that, based on
these building blocks, we present our PPAQ scheme.

A. Analyzing ANN Queries in Road Network

A typical road network is usually abstracted as road
segments (edges) and junctions (vertices) [5], as shown in
Fig. 1. Assume that there are k vertices in a road network,
denoted as V = {v1, v2, · · · , vk}, and n points of interest
P = {p1, p2, · · · , pn} that lie on edges. Given m query points
Q = {q1, q2, · · · , qm} that also lie on edges, we have the
following network distances: for each pi, i = 1, 2, · · · , n,

F(pi,Q) = F
(
d(qt, pi) = d(qt, v̂t) + d(v̂t, pi) |mt=1

)
(3)

where v̂t ∈ V is one of the vertices lying on the same edge as
the query point qt ∈ Q. For the simplicity sake, we assume
that v̂t ∈ V is the closest neighbor vertex to qt in the road
network. If we let F be the sum function, the ANN query will
return the point in P that has the minimum total distance:

arg min
i∈[1,n]

(F(pi,Q)) = arg min
i∈[1,n]

(
m∑
t=1

(d(qt, v̂t) + d(v̂t, pi))

)

=arg min
i∈[1,n]

(
m∑
t=1

d(qt, v̂t) +

m∑
t=1

d(v̂t, pi)

)

⇔ arg min
i∈[1,n]

(
m∑
t=1

d(v̂t, pi)

)
.

(4)
Meanwhile, since LSP usually holds the road network, i.e.,
the location of nodes V and data points P , LSP can pre-
compute

∑m
t=1 d(v̂t, pi) and quickly obtain the optimal point

if it knows the neighbor node of the query points.
On the other hand, if F is the max function, the ANN query

can return the point with the following distance:

arg min
i∈[1,n]

(F(pi,Q))

= arg min
i∈[1,n]

(
arg max

t∈[1,m]

(
d(qt, v̂t) + d(v̂t, pi)

)) (5)

Similarly, d(v̂t, pi) can be pre-computed by LSP . If users
send d(qt, v̂t) and v̂t to LSP , it is simple for LSP to obtain
the maximum distance by matching vertex v̂t.

From the above analysis, we can simplify the problem of
ANN queries in road networks by converting the distance
calculation between P and Q into the distance between V and
P , which can be pre-computed by LSP . Furthermore, from
Eq. (4) and Eq. (5), we can see that the ANN queries es-
sentially have two basic operations: addition and comparison.
Accordingly, we need to perform these two operations over
ciphertexts if we apply SHE to encrypt users’ locations. Note
that, although it is easy to have the addition operation over
ciphertexts by using the homomorphic addition property, it is
not easy to compare values over their ciphertexts in a single-
server model. This is because the operator is expected to obtain
the comparison result without knowing any information about

a 0 0 1 1 0 0 1 1

b 0 1 0 1 0 1 0 1

Carry 0 0 0 0 1 1 1 1

o 0 1 1 0 1 0 0 1
"̂ 0 0 0 1 0 1 1 1

Fig. 3. Truth table of addition, in which Carry is the current carry bit, o is
the output of (a+ b+ Carry mod 2), and ĉ is the new carry bit.

the underlying plaintexts. Although the arithmetic operations
(multiplication and addition) can be performed on ciphertexts
due to the homomorphic properties of SHE, the operator
cannot directly use them to compare two ciphertexts and get
the comparison result in a single server. As a result, to tackle
this challenge, we carefully devise two novel bit-based secure
circuit schemes to perform addition and comparison operations
over ciphertexts.

B. Secure Addition and Comparison Circuits

In order to securely compare two integers without leaking
them and the result, we design a secure comparison scheme
based on the encrypted bit sequences. Since we employ SHE
to encrypt each bit, and only the addition and multiplication
(homomorphic) operations are used in our comparison scheme,
we denote it as secure comparison circuit. Correspondingly, to
keep consistency, we also design a secure addition circuit to
achieve the addition operation over encrypted bit sequences.
In the following, we first introduce the secure addition circuit,
and then present the secure comparison circuit.

1) Secure Addition Circuit: Assume there are two non-
negative integers {x, y} of the same bit length, and the corre-
sponding encrypted bit sequences are E(~x) = (E(xj)|0j=l) and
E(~y) = (E(yj)|0j=l), where xj , yj ∈ {0, 1}, j = l, · · · , 1, 0,
and l is the most significant bit position of inputs. The secure
addition circuit is to compute E(~z) = (E(zj)|0j=l) by operating
E(~x) and E(~y) to satisfy z = x+ y, where z is an integer and
E(~z) is its corresponding encrypted bit sequence. For example,
if we set x = 5, y = 7, E(~5) = (E(0),E(1),E(0),E(1))
and E(~7) = (E(0),E(1),E(1),E(1)), then we can compute
z = 5 + 7 = 12 and E(~12) = (E(1),E(1),E(0),E(0)).

Fig. 3 illustrates the truth table of the addition operation,
in which o is the output of current bit and ĉ is the new carry
bit. It is easy to obtain the logical expressions of o and ĉ as
follows:

o = (¬a ∧¬ b ∧ c) ∨ (¬a ∧ b ∧¬ c)
∨ (a ∧¬ b ∧¬ c) ∨ (a ∧ b ∧ c)

= a+ b+ c− 2(ab+ ac+ bc) + 4abc

ĉ = (¬a ∧ b ∧ c) ∨ (a ∧¬ b ∧ c)
∨ (a ∧ b ∧¬ c) ∨ (a ∧ b ∧ c)

= ab+ ac+ bc− 2abc

According to the above logical expressions, we have E(~z) =

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

5

(E(zl), · · · ,E(zj), · · · ,E(z1),E(z0)), for each j = l, · · · , 1, 0

E(zj) = E(xj + yj + ĉj)

+ E(−1) · E(2) · E(xjyj + xj ĉj + yj ĉj)

+ E(4) · E(xjyj ĉj),
(6)

where:

E(ĉj) =


E(xj−1yj−1 + xj−1ĉj−1 + yj−1ĉj−1)

+ E(−1) · E(2) · E(xj−1yj−1ĉj−1) j > 0

E(0) j = 0.

(7)

Next, we depict the details about the process of E(~12) =
E(~5)+E(~7) with our secure addition circuit. First of all, since
ĉ0 = 0, we have z0 = x0 + y0 − 2x0y0 = 0. Then, for j = 1,
we can obtain:

ĉ1 = x0y0 + x0ĉ0 + y0ĉ0 − 2x0y0ĉ0 = 1;

z1 = x1 + y1 + ĉ1 − 2(x1y1 + x1ĉ1 + y1ĉ1) + 4x1y1ĉ1

= 2− 2 = 0;

Repeatedly, with Eq. (7) and Eq. (6), we can calculate ĉ2 = 1,
z2 = 1 and ĉ3 = 1, z3 = 1. Finally, we have (E(zj)|0j=3) =

(E(1),E(1),E(0),E(0)) = E(~12).
2) Secure Comparison Circuit: Given E(~x) = (E(xj)|0j=l)

and E(~y) = (E(yj)|0j=l)}, the secure comparison circuit is
used to determine whether the corresponding integers x, y
satisfy x > y without leaking x, y, and the comparison result.
If yes, it outputs E(δ) = E(1), otherwise E(δ) = E(0).

The main idea over the plaintexts is to check whether there
exists the most significant differing bit position j such that
xj > yj and xj

′
= yj

′
for all j′ = l, · · · , j + 1. If yes,

then x > y; otherwise x ≤ y. For j = l, · · · , 1, 0, we can
compute dj = xj − yj , then there are three cases for dj ,
i.e., dj = 1, 0,−1. When dj = 1, or −1, we can directly
obtain the output from the difference of the j-th bit. While
when dj = 0, we have to recursively use the (j − 1)-th bit to
determine the order relation until j = 0. When the operations
work on the ciphertexts, since we cannot determine whether
E(dj) is E(dj) = E(1),E(0), or E(−1), we have to go through
all j = l, · · · , 1, 0.

!! "!
1 1
0 0
-1 0

!! #!
1 0
0 1
-1 0

Table (a) Table (b)

j 3 2 1 0

& = 5 E(0) E(1) E(0) E(1)

' = 7 E(0) E(1) E(1) E(1)

(! E(0) E(0) E(-1) E(0)

)! E(0) E(0) E(0) E(0)

*! E(1) E(1) E(0) E(1)

&" = "" + #") &# = 0 + 1) &#
&# = "# + ##) &$ = 0 + 1) &$
&$ = "$ + #$) &% = 0 + 0) &%
&% = "% = 0

, = &" = 0 ⟺ $ < %

Fig. 4. Relations of αj , βj and dj with an example of x = 5, y = 7.

For the ease of description, we denote the current j-th bit
value as αj and the transitive bit value from j to j− 1 as βj .
Since we consider x > y, we have the relation of αj , βj and
dj shown in Fig. 4, where

{
αj = (dj · (dj + 1))/2

βj = 1− dj · dj
(8)

Then, over the ciphertexts E(~x) = (E(xj)|0j=l) and E(~y) =
(E(yj)|0j=l)}, we have the output of each bit ρj as follows.

E(ρj) =

{
E(αj) + E(βj) · E(ρj−1) j > 0

E(αj) j = 0,
(9)

where j = l, · · · , 1, 0. Finally, the secure comparison circuit
produces E(δ) = E(ρl) as the output.

Correctness. We say our secure comparison circuit is
correct if it outputs E(δ) = E(ρl) = E(1) when x > y, and
outputs E(δ) = E(ρl) = E(0) otherwise.

Proof. When x > y, it means ∃j ∈ [0, l], dj = 1 and dj
′

= 0,
for all j′ = l, · · · , j + 1. In this case, E(ρj) = E(1) + E(0) ·
E(ρj−1) = E(1). Since dj

′
= 0 for j′ = l, · · · , j + 1, we

have E(αj
′
) = E(0) and E(βj

′
) = E(1), leading to E(ρj

′
) =

E(ρj
′−1). As a result, E(ρl) = E(ρj) = E(1). Similarly, when

x < y, we have E(ρl) = E(ρj) = E(0). When x = y, it means
∀j ∈ [0, l], dj = 0, leading to E(αj) = E(0) and E(βj) =
E(1). Therefore, E(ρl) = E(ρ0) = E(α0) = E(0).

Nevertheless, for obtaining E(αj), we still need to further
compute E(dj ·(dj+1))/ E(2). To tackle the challenge, we can
choose an odd random number L in SHE, then it is easy for us
to find an inverse element E(∆) satisfying E(∆)·E(2) = E(1).

Theorem 1. In the KeyGen(k0, k1, k2) algorithm of SHE,
when an odd random number L is chosen, i.e., gcd(2,L) = 1,
we can set ∆ = 1+L

2 to satisfy E(∆) · E(2) = E(1).

Proof. Since “ mod L” is applied in the SHE decryption
algorithm, it is easy to see E(∆) · E(2) = E(∆ · 2) =
E(1+L

2 · 2) = E(1 + L) = E(1). The correctness follows.

According to Theorem 1, we can obtain E(αj) by comput-
ing E(αj) = E(dj · (dj + 1)) · E(∆).

In Fig. 4, we also demonstrate an example of comparing
x = 5 and y = 7. Since x < y, the result δ = ρ3 = 0.
Note that, in the above analysis, we only show that our secure
comparison circuit can determine whether x > y. In fact, we
can also determine any order relations of two encrypted bit
sequences by constructing a α-function:

αj = fα(d
j) = λ1

dj(dj + 1)

2
+λ2

(dj − 1)(dj + 1)

−1 +λ3
dj(dj − 1)

2
.

(10)
The correctness of α-function can be easily verified. In Fig. 4,
if the i-th row of Table (a) is 1, we can set the i-th term
of fα(dj) is 1, and others are 0. For example, if we want
to determine x ≥ y, we should make λ1 = λ2 = 1 and
λ3 = 0. For determining whether x > y, we can set λ1 = 1

and λ2 = λ3 = 0. Thus, αj = fα(dj) = dj(dj+1)
2 .

C. Description of PPAQ

In this subsection, we present our PPAQ scheme, which is
comprised of four phases: 1) system initialization; 2) location
report; 3) optimal location selection; and 4) location recovery.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3174184, IEEE Internet of
Things Journal

6

Before delving into the details, we first assume LSP holds
a road network with k vertices V = {v1, v2, · · · , vk} and n
points of interest P = {p1, p2, · · · , pn}, and there are m users
in the group, where k, n,m ≥ 2. We say vs ∈ V and pi ∈ P ,
where s ∈ [1, k] and i ∈ [1, n], are unique integers encoded
by LSP . The corresponding binary formats are denoted as ~vs
and ~pi. Besides, we say E(~vs) = (E(vjs)|0j=l) and E(~pi) =

(E(pji)|0j=l), where j = l, · · · , 1, 0, indicate that the binary is
encrypted bit by bit, and l is the common maximum bit length.

1) System Initialization: In our scheme, the initiator u1

initializes a privacy-preserving aggregate query. First, u1 ob-
tains the user ids of other users in the group and sends a
task generation request with these ids to LSP . Then, LSP
randomly generates a task id tid and disseminates it to users
U according to the received user ids. Next, given security
parameters (k0, k1, k2), u1 generates the sk = (p,L), where
L is odd, and pp = (k0, k1, k2,N). Afterward, u1 calls
Enc(sk,m) to generate {E(0)1,E(0)2,E(−1),E(∆)}, where
∆ = 1+L

2 . Finally, u1 sets the public key pk = {E(0)1,
E(0)2,E(−1),E(∆), pp}.

2) Location Report: Assume that each user ut, t ∈ [1,m],
has installed the client (LSP’s application) in his/her mobile
phone. First, the client senses the location of ut, denoted as qt,
and calculates the distance from qt to its closest neighbor ver-
tex v̂t. Since V is embedded into clients by LSP in advance,
the client can easily compute θt = d(qt, v̂t) with the sensed qt.
After that, θt is encoded into a bit sequence and encrypted into
E(~θt) = (E(θjt)|0j=l) using Eq. (2). With the same encryption
approach, v̂t is encrypted into E(~vt) = (E(v̂jt)|0j=l). Finally,
ut sends 〈tid,E(~θt),E(~vt)〉 to LSP .

3) Optimal Location Selection: Assume there are m users
in the group. LSP will receive m tuples 〈tid,E(~θt),E(~vt)〉,
where t ∈ [1,m]. Since LSP holds spatial databases, it can
pre-compute the shortest distances {σsi = d(vs, pi) | s ∈
[1, k], i ∈ [1, n]} over plaintexts using existing shortest path al-
gorithms, such as Dijkstra [21] and HiTi [22], and encode {σsi,
vs} into bit sequences {~σsi, ~vs}, respectively. Afterward, LSP
can construct tuples 〈~vs, ~σsi, pi〉, where s ∈ [1, k], i ∈ [1, n]
in advance. It is worth noting that both calculating shortest
path and encoding bit sequences can be achieved offline. With
the constructed and received tuples, LSP can perform the
following steps to find the optimal location.

Step 1: Matching. For each pi, if all vertices can reach
it, there will be k tuples related to pi: 〈~vs, ~σsi, pi〉 for s =
1, · · · , k. Consequently, there must exist a tuple in the k tuples
that has a joint vertex with the received ~vt. That is, ∃s ∈ [1, k]
such that v̂t(a.k.a ~vt) = vs(a.k.a ~vs). It means qt can reach
pi with the shortest distance θt + σsi = d(qt, v̂t) + d(vs, pi)
passing the vertex vs that is also the neighbor vertex v̂t of qt.
As a result, the problem is converted into: LSP needs to find
~vs in the k tuples that satisfies ~vs = ~vt with encrypted E(~vt),
and has no idea about which vertex in V is the same as ~vt.
To address it, we adopt the following matching approach.

• First, LSP calculates a flag fs for each vs as follows.

E(fs) = ~vs � E(~vt) =
∏l

j=0
v
j
s � E(v̂jt), (11)

where the operation vjs � E(v̂jt) is defined as

vjs � E(v̂jt) =

{
E(1− v̂

j
t) vjs = 0

E(v̂jt) vjs = 1.
(12)

It means that only if ~vs is the same as ~vt, i.e., for each bit
vjs = v̂

j
t , the corresponding flag fs is 1, otherwise it is 0.

• Then, with the k tuples (〈~vs, ~σsi, pi〉 for s = 1, · · · , k) and
the corresponding fs, LSP computes E(~σti) = (E(σjti)|0j=l):

E(σjti) =
∑k

s=1
E(fs) · E(σjsi) = E(

k∑
s=1

(fs · σjsi)), (13)

in which LSP can first encrypt σjsi into E(σjsi) with Eq. (2).
Next, LSP can construct a two-element tuple 〈E(~σti), pi〉 that
indicates qt can reach pi via its neighbor v̂t = vs with the
shortest distance σti. Now, LSP totally holds m × n tuples:
〈E(~σti), pi〉, where t ∈ [1,m] and i ∈ [1, n].

Step 2: Calculating Aggregate Values. If F is sum, LSP
computes the total distance fromQ to pi. According to Eq. (4),
LSP can only add up all users’ shortest distances from their
neighbor vertices v̂t to pi, i.e., E(σi) =

∑m
t=1 E(σti) =

E(
∑m
t=1 σti). It can be achieved by our secure addition circuit

(Section IV-B1) with inputs E(~σti). Note that it is simple for
LSP to set a proper l to guarantee that there is no overflow
when using the secure addition circuit.

If F is max, LSP computes the maximum distance from
Q to pi. First, LSP adds up E(θt) and E(σti) using the
secure addition circuit, i.e., E(τti) = E(θt) + E(σti), in
which the inputs of the secure addition circuit are E(~θt) and
E(~σti), and the output is E(~τti). Then, LSP determines the
maximum value among E(τti) for t = 1, 2, · · · ,m. Take
comparing E(τ1i) and E(τ2i) as an example. LSP employs
our secure comparison circuit (Section IV-B2) to determine
whether τ1i > τ2i with inputs E(~τ1i) and E(~τ2i). If yes, our
secure comparison circuit outputs E(δ) = E(1), otherwise
E(δ) = E(0). Using the following equation, LSP can calculate
the maximum value, denoted as E(~τmaxi):

E(τ jmaxi) = E(δ) · (E(τ j1i)− E(τ j2i)) + E(τ j2i). (14)

If δ is 1, E(τmaxi) = E(τ1i). Otherwise, E(τmaxi) = E(τ2i). It
means τmaxi is always the larger one. After that, LSP can con-
tinue to compare E(τmaxi) and E(τ3i) with the secure compar-
ison circuit. Repeating m−1 times, LSP can obtain the max-
imum distance from Q to pi: E(σi) = arg maxt∈[1,m](E(τti)).

After calculating aggregating values, LSP constructs n
tuples: 〈E(~σi), pi〉 for i = 1, 2, · · · , n. Since E(σi) is com-
puted using the secure addition circuit (sum) or the secure
comparison circuit (max), it is in binary format E(~σi) here.

Step 3: Calculating Optimal Location. After obtaining a
set of distances 〈E(~σi), pi〉, i ∈ [1, n], LSP can determine a
POI that has the minimum distance among these n distances,
i.e., arg mini∈[1,n](E(σi)). Specifically, LSP computes the
minimum value among E(σi) for i = 1, 2, · · · , n. Take
comparing E(σ1) and E(σ2) as an example. LSP employs
our secure comparison circuit to determine whether σ1 > σ2

with inputs E(~σ1) and E(~σ2). If yes, our secure comparison
circuit outputs E(δ) = E(1), otherwise E(δ) = E(0). Then,

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3174184, IEEE Internet of
Things Journal

7

LSP calculates the minimum distance and the corresponding
POI, denoted as E(~σmin) and E(pmin), respectively,{

E(σjmin) = E(δ) · (E(σj2)− E(σj1)) + E(σj1),

E(pmin) = E(δ) · (E(p2)− E(p1)) + E(p1),
(15)

where E(p1) and E(p2) are encrypted by LSP using Eq. (2).
If δ is 1, E(σmin) = E(σ2) and E(pmin) = E(p2). Otherwise,
E(σmin) = E(σ1) and E(pmin) = E(p1). It means that pmin
always has the minimum distance σmin. After that, LSP
can continue to compare E(σmin) and E(σ3) with the secure
comparison circuit. Repeating n−1 times, LSP can obtain the
optimal location E(po) that has minimum distance cost E(~σo)
from Q to P , i.e., E(σo) = arg mini∈[1,n](E(σi)). Notably,
the parallelization technique can be used here to improve
performance. Finally, LSP returns E(po) to the initiator u1.
See Algorithm 1 for the complete process of optimal location
selection, in which Sadd and Scom indicate our secure addition
circuit and secure comparison circuit, respectively.

4) Location Recovery: Upon receiving E(po), the initiator
u1 recovers the plaintext po with the secret key sk. Then,
u1 distributes po to other group users via a secure channel.
Correctness. We say our PPAQ scheme is correct if LSP
obtains the optimal location E(po) with regard to F .

Proof. First of all, we prove that our PPAQ scheme is correct
when F is the sum function. In the matching step, according
to Eq. (12), we know that fs = 1 iff ~vs = ~vt. As a result,
E(σti) =

∑k
s=1 E(fs) · E(σsi) must be the shortest distance

from qt to pi since only the matched vertex has fs = 1, while
others are 0. Then, in the aggregating step, since F is sum,
we need to obtain the minimum total distances from all query
locations to one POI location pi. According to Eq. (4), we can
achieve it by adding up all shortest distances from the matched
vertices to pi, i.e., E(σi) =

∑m
t=1 E(σti). Next, in the last

step, by repeatedly using our secure comparison circuit and
Eq. (15), we can obtain E(po), where po has the minimum total
distances. The correctness of our secure comparison circuit
(see details in Section IV-B) and Eq. (15) ensures that po
is the optimal location when F is sum. From Algorithm 1,
we know that the only difference between the sum function
and the max function is the aggregating step, in which the
maximum distance is guaranteed by the correctness of our
secure comparison circuit. Similarly, we can prove that our
PPAQ scheme is correct when F is max.

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
scheme PPAQ. Following our design goals, we will prove that
our PPAQ scheme can preserve the privacy of users’ locations
and the query result, i.e., the selected optimal location. Since
LSP holds the plaintext information of road networks, it is
essential for our PPAQ scheme to hide access patterns.

First, we briefly review the security model for securely
realizing an ideal functionality in the presence of the static
semi-honest adversary [23]. Since only LSP is semi-honest
in our security model, our proof will focus on the service
provider LSP .

Algorithm 1 Optimal Location Selection
Input: Encrypted locations of query users, {〈tid,E(~θt),E(~vt)〉 | t ∈ [1,m]}.

Spatial database, {〈~vs, ~σsi, pi〉 | s ∈ [1, k], i ∈ [1, n]}.
Output: The selected optimal location, E(po).
1: for s← 1 to k do
2: E(fs)← ~vs � E(~vt) =

∏l
j=0 v

j
s � E(v̂jt);

3: E(σti)←
∑k
s=1 E(fs) · E(σsi) = E(

∑k
s=1(fs · σsi));

4: if F is sum then
5: E(σi)←

∑m
t=1 E(σti) = E(

∑m
t=1 σti); . Sadd

6: else if F is max then
7: E(τti)← E(θt) + E(σti); . Sadd
8: E(σi)← argmaxt∈[1,m](E(τti)); . Scom and Eq. (14)

9: E(po)← E(p1); E(σo)← E(σ1);
10: for i← 2 to n do
11: E(δi)← Scom

(
E(σo),E(σi)

)
; . Inputs are bit sequences

12: E(σo)← E(δi) · (E(σo)− E(σi)) + E(σi);
13: E(po)← E(δi) · (E(po)− E(pi)) + E(pi);
14: return E(po);

Real world model: The real world execution of a scheme
Π takes place in LSP and adversary A, who corrupts LSP .
Assume that x indicates the input of users’ locations, y
represents the input held by LSP , and z is auxiliary input,
e.g., the length of ciphertexts and bit sequence. With the inputs
of x, y, and z, the execution of Π under A in the real world
mode is defined as:

REALΠ,A,z(x, y)
def
= {OutputΠ(x, y),ViewΠ(x, y), z},

in which OutputΠ(x, y) is the output of LSP after an exe-
cution of Π on (x, y), and ViewΠ(x, y) is the view of LSP
during an execution of Π on (x, y).

Ideal world model: In the ideal world execution, there is an
ideal functionality F for a function f , and LSP interacts only
with F . Here, the execution of f under simulator Sim in the
ideal world model on input pair (x, y) and auxiliary input z
is defined as:

IDEALF,Sim,z(x, y)
def
= {f(x, y), Sim(x, f(x, y)), z}.

Definition 3 (Security against semi-honest adversary). Let F
be a deterministic functionality and Π be a scheme in LSP .
We say that Π securely realizes F if there exists Sim of
PPT (Probabilistic Polynomial Time) transformations (where
Sim = Sim(A)) such that for semi-honest PPT adversary A,
for x, y and z, for LSP holds:

REALΠ,A,z(x, y)
c
≈ IDEALF,Sim,z(x, y)

where
c
≈ compactly denotes computational indistinguishability.

A. The PPAQ scheme is privacy-preserving

First, we use Definition 3 to demonstrate that our PPAQ
scheme can preserve the privacy of users’ locations and the
optimal location.

Theorem 2. The PPAQ scheme securely selects the optimal
location in the presence of semi-honest adversary A.

Proof. Here, we show how to construct the simulator. Sim

randomly chooses m tuples: 〈tid′, ~θ′t,~v′t〉, t ∈ [1,m] and
p′o, where θ′jt , v

′j
t ∈ {0, 1}, and j = l, · · · , 1, 0. Then,

Sim simulates A as follows: i) it generates ciphertexts
〈tid′,E(~θ′t),E(~v′t)〉 and E(p′o) by the encryption algorithm of
SHE; ii) it outputs A’s view. In the real execution, A receives
m tuples: 〈tid,E(~θt),E(~vt)〉 and obtains E(po), whereas Sim

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3174184, IEEE Internet of
Things Journal

8

gives 〈tid′,E(~θ′t),E(~v′t)〉 and E(p′o) in the ideal execution. The
semantic security of SHE [14] guarantees that the views of A
in the real and the ideal worlds are indistinguishable. Here, we
ignore tid and tid′ since both of them are randomly chosen.

Since all operations are performed over ciphertexts, it is
impossible to break the intermediate results during the scheme
without the secret key. Therefore, there is no advantage for A
to distinguish the real world and the ideal world.

From the above proof, we can see that our PPAQ scheme
can ensure the privacy of users’ locations {~θt,~vt | t ∈ [1,m]}
and the optimal location po. As a result, our PPAQ scheme is
privacy-preserving.

B. The PPAQ scheme hides access patterns

Next, we show that our PPAQ scheme can preserve the
privacy of access patterns.

Theorem 3. The PPAQ scheme can hide the information about
which POI in P is selected as the optimal location.

Proof. We prove Theorem 3 by demonstrating LSP does not
know which point in P is the optimal location po though
LSP holds the plaintext information of the road network:
V = {v1, v2, · · · , vk} and P = {p1, p2, · · · , pn}.

First of all, LSP receives m tuples 〈tid,E(~θt),E(~vt)〉, t ∈
[1,m] and then calculates k flags E(fs), s ∈ [1, k] for each user
with the plaintexts vs by Eq. (11). However, from Eq. (12),
we can see that E(fs) are calculated from E(~vt) that are kept
secret from LSP . As a result, LSP has no idea about E(fs)
and thus does not know E(~σti) even though ~σsi (calculated
by Eq. (13)) are in plaintext. Note that k ≥ 2. Next, with
E(~σti), LSP calculates E(~σi) under the aggregate distance
function F . Here, we take F = sum as an example, in which
E(σi) =

∑m
t=1 E(σti) = E(

∑m
t=1 σti). Since it is achieved by

our secure addition circuit that operates on SHE ciphertexts
bit by bit, E(~σi) are kept secret from LSP due to the security
of E(~σti). After that, LSP uses Eq. (15) to calculate E(pmin)
with the minimum distance cost. Since all calculations in our
secure comparison circuit are performed on encrypted bits,
it ensures that LSP learns nothing about the inputs E(~σi)
and the output E(δ). Therefore, LSP does not know which
of the two locations to be compared is selected as E(pmin).
Thus, LSP cannot know which location in P is selected as
the optimal location E(po).

VI. PERFORMANCE EVALUATION

In this section, we will first evaluate the performance of
our proposed secure addition and comparison circuits and
then evaluate our PPAQ scheme. Since the optimal location
selection phase is the core part of our PPAQ scheme, and
other phases have negligible computational costs compared to
the phase, we will focus on the performance of the optimal
location selection phase in this section. Notably, the commu-
nication cost in our PPAQ scheme is evident and trivial. As a
result, we do not provide such evaluations.

Experimental setting: We implemented our scheme in Java
and executed it on a machine with 16 GB memory, 3.4 GHz

Intel(R) Core(TM) i7-3770 processors, and Ubuntu 16.04 OS.
In our experiments, we adopt a synthetic dataset to evaluate
our secure addition and secure comparison circuits and two
real-world datasets: Sequoia [24] used in [12], [25] and
DIMACS [26] used in [8], to evaluate our PPAQ scheme.
In real-world scenarios, since query users usually obtain the
optimal location of a specific type of POI, e.g., restaurant,
we evaluate the POI of “bar” as the target points in Sequoia
and “cafe” in DIMACS, in which there are 150 bars and 100
cafes, respectively. Since the location space in the Sequoia
dataset has been normalized into a square space, we randomly
choose 200 vertices in the dataset. For the DIMACS dataset,
we select 200 real locations of junctions in the New York
City as vertices with the help of OpenStreetMap [27]. As the
shortest distances between vertices and POIs are calculated by
LSP over plaintexts in advance, and how to calculate them is
not the focus of this work, we employ the Euclidean distance
between vertices and POIs in our experiments.

8 12 16 20
Bit length

10

20

30

40

50

Av
er

ag
e

tim
e

(m
s) Sec-Addition

Sec-Comparison

(a) Varying with bit length l

2048 4096 6144 8192
k0

5

10

15

20

Av
er

ag
e

tim
e

(m
s) Sec-Addition

Sec-Comparison

(b) Varying with k0
Fig. 5. Average execution time of secure addition and secure comparison
circuits. (a) Varying with bit length l, k0=8192; (b) Varying with k0, l = 8.

A. Performance of Secure Addition and Comparison Circuits

In this subsection, we evaluate the execution time of our
proposed secure circuits over the synthetic dataset, in which
we randomly generate 2,000 integers for each bit length from 8
to 20, i.e., l ∈ [8, 20]. Recalling Section IV-B, the performance
of our secure addition and secure comparison circuits is related
to the inputs’ bit length l and the key size k0 (see details in
the KeyGen() algorithm of SHE). As a result, we explore the
impact of these two parameters in Fig. 5, where the secure
addition circuit and secure comparison circuit are denoted
as Sec-Addition and Sec-Comparison, respectively. Fig. 5(a)
depicts the average execution time of Sec-Addition and Sec-
Comparison varying with the bit length l from 8 to 20. We can
see that the secure addition circuit is always more expensive
than the secure comparison circuit in execution time. By
comparing Eq. (6) and Eq. (9), it is easy to see that our
devised secure comparison circuit is simpler than the secure
addition circuit due to the fewer homomorphic operations.
In Fig. 5(b), we explore the impact of key size k0 from
2048 to 8192. Similarly, the secure addition circuit has higher
execution time for the same reason. Although our proposed
secure circuits adopt the bit-based homomorphic operations to
achieve addition and comparison, both Fig. 5(a) and Fig. 5(b)
show their efficiency because they run at the millisecond level
and have no communication with other entities.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3174184, IEEE Internet of
Things Journal

9

30 60 90 120 150
n

5

10

15

20
Se

ar
ch

 T
im

e
(m

s)
×105

ANN-Sum
ANN-Max

(a) Sequoia

20 40 60 80 100
n

5

10

15

20

Se
ar

ch
 T

im
e

(m
s)

×105

ANN-Sum
ANN-Max

(b) DIMACS

Fig. 6. Search time of our PPAQ scheme varying with the number of POIs
n. (a) Over the Sequoia dataset; (b) Over the DIMACS dataset.

B. Performance of Our PPAQ Scheme

In this subsection, we evaluate the search time of our PPAQ
scheme over Sequoia and DIMACS datasets. Since the total
distance in both datasets is less than 216, we set l = 16 in the
following experiments. In addition, for the security parameters
of SHE, we let k0 = 8192, k1 = 20, and k2 = 80. Note that,
since SHE is a leveled homomorphic encryption scheme, and
its maximum homomorphic multiplication depth is related to
k0, we can either adopt a bootstrapping protocol [14] between
LSP and u1 to refresh ciphertexts or enlarge k0 to support
more homomorphic multiplication operations. For simplicity
sake, here we set k0 = 8192 and adopt the bootstrapping
protocol to refresh ciphertexts.

From Section IV-C, we know that the search time of our
PPAQ scheme is related to the number of points of interest
POIs n, the number of query users m, and the number of
vertices k. Accordingly, Fig. 6, Fig. 7, and Fig. 8 plot the
search time of our PPAQ scheme varying with n, m, and k,
respectively. In particular, we compare the sum function and
max function of the ANN queries, which are denoted as ANN-
Sum and ANN-Max in the following evaluations.
• Impact of the number of POIs n. Since there are 150 bars

in the Sequoia dataset and 100 cafes in the DIMACS dataset,
we vary n from 30 to 150 in Fig. 6(a) and from 20 to 100
in Fig. 6(b). In both figures, we set k = 100 and m = 16.
We can see that the search time linearly increases with the
number of POIs in both figures. The reason is clear since our
PPAQ scheme is to select an optimal location from n POIs,
and there is no other impacts when we make m and k be fixed.
In addition, we can see that the sum function requires slightly
less search time than the max function in our PPAQ scheme.
That is because the max function needs to calculate sum value
E(~τti) by using the secure addition circuit before obtaining the
maximum distance, which entails the extra computational costs
compared to the sum function.
• Impact of the number of query users m. Fig. 7(a) and

Fig. 7(b) illustrate the search time varying with m over the
Sequoia and DIMACS datasets, respectively. We randomly
generate the locations of query users in the spaces of these two
datasets, set the ranges from 4 to 32, and fix k = 100, n = 50.
Similar to the impact of n, both the figures show a linearly
increasing tread. However, the difference of Fig. 7(a) is larger
than that of Fig. 7(b). That is because the max function needs
to add each user’s uploaded distance E(θt) to the shortest path
distance E(σti), i.e., E(τti) = E(θt) +E(σti). Therefore, as m
increases, so does the difference of the search time between

8 16 24 32
m

5

10

15

Se
ar

ch
 T

im
e

(m
s)

×105

ANN-Sum
ANN-Max

(a) Sequoia

8 16 24 32
m

5

10

15

Se
ar

ch
 T

im
e

(m
s)

×105

ANN-Sum
ANN-Max

(b) DIMACS

Fig. 7. Search time of our PPAQ scheme varying with the number of query
users m. (a) Over the Sequoia dataset; (b) Over the DIMACS dataset.

40 80 120 160 200
k

5

10

15

Se
ar

ch
 T

im
e

(m
s)

×105

ANN-Sum
ANN-Max

(a) Sequoia

40 80 120 160 200
k

5

10

15

Se
ar

ch
 T

im
e

(m
s)

×105

ANN-Sum
ANN-Max

(b) DIMACS

Fig. 8. Search time of our PPAQ scheme varying with the number of vertices
k. (a) Over the Sequoia dataset; (b) Over the DIMACS dataset.

the sum and the max functions.
• Impact of the number of vertices k. Fig. 8 plots the

search time of our PPAQ scheme varying with the number
of vertices k from 40 to 200, in which Fig. 8(a) shows the
search time over the Sequoia dataset, while Fig. 8(b) is for
the DIMACS dataset. Very differently, the differences of the
search time between the sum and the max functions remain
stable in Fig. 8(a) and Fig. 8(b). It is due to that the number
of vertices only affects the search time of the matching step
(Step 1). When performing the calculating aggregate values
step (Step 2), it has nothing to do with the number of vertices.

From Fig. 6, Fig. 7, and Fig. 8, we can see that the search
time linearly increases with the corresponding parameter in
all figures. In real-world scenarios, the numbers of POIs and
vertices are usually fixed. As a result, our PPAQ scheme
can achieve linear complexity. Note that our PPAQ scheme
is not designed for real-time applications but for plan-ahead
systems, in which the group of users launch the ANN queries
in advance. Therefore, it is acceptable for an application to
select the optimal location with several minutes for ensuring
the fully privacy preservation.

Besides, we have observed that the matching step (Step 1)
consumes the most of execution time in our PPAQ scheme, and
it is significantly affected by the number of vertices. To illus-
trate it, we list the percentage of execution time of Step 1 in
Table I, where percentage = execution time of Step 1

execution time of (Step 1 + Step 2 + Step 3) .

TABLE I
PERCENTAGE OF EXECUTION TIME OF STEP 1

Varying k 40 80 120 160 200

ANN-Sum 88.9 % 94.5% 96.2% 97.1% 97.6%

ANN-Max 89.8 % 94.2% 95.9% 96.9% 97.4%

It is worth noting that the number of POIs n and query
users m has little impact on the percentage of the execution

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3174184, IEEE Internet of
Things Journal

10

time of Step 1, i.e., their ratios remain stable (around 95%)
when varying n and m. In order to improve the efficiency,
LSP can have the following approaches to optimize Step 1:
i) adopt multiple threads; ii) select fewer vertices to calculate
shortest path distances. The second approach may affect the
accuracy of the selected optimal location, and how to select
vertices is an interesting topic. We leave the research on these
optimization approaches as future work.

VII. RELATED WORK

The ANN query has attracted considerable attention due to
its wide range of applications [1]–[8]. Among them, the works
in [1]–[4] focus on the Euclidean space, while the others [5]–
[8] pay their attention to road networks. Papadias et al. [1], [2]
proposed several algorithms to efficiently perform the ANN
queries by assuming that the users’ locations fit in memory
and POIs are indexed by an R-tree. Lian et al. [3] considered
the ANN queries over the uncertain database and integrated
effective pruning methods to facilitate reducing the search
space of probabilistic ANN queries. In 2010, Li et al. [4]
designed efficient algorithms for the group enclosing queries,
which actually is a variant of the ANN query by calculating the
maximum distance instead of minimum distance after applying
aggregate functions. In the road network scenario, Yiu et al. [5]
first studied the ANN queries in road networks and presented
three algorithms to explore the network around the query
points until the desired results are discovered. Zhu et al. [6]
presented a voronoi-based approach to solve the ANN problem
in road networks. The advantage of this work is that it does
not need to retrieve the network from disk and just utilizes the
look-up tables of the voronoi diagram generated in advance.
Yan et al. [7] adopted the ANN query to find the optimal
meeting point in road networks, which has the same scenario
as our work. Recently, Yao et al. [8] studied the flexible ANN
queries in road networks and proposed a series of universal
methods to solve this problem, e.g., Dijkstra-based algorithm.
However, all of the above works aimed to improve ANN query
efficiency and did not consider the privacy issues.

Existing privacy-preserving ANN query schemes mainly
concentrated on the Euclidean space [10]–[12]. Although their
privacy-preserving techniques can be used in the road network
scenario, there are privacy problems with these techniques.
In [10], Hashem et al. converted each user’s location into
a region, and the service provider returns a super-set of
the exact query result. This approach not only increases the
communication cost but also has privacy issues in terms of
users’ locations and query results since they are not fully
protected. Ashouri et al. [11] adopted a secure multiparty
computation technique to make each user participate in the
calculation of the query results. However, this approach cannot
protect the privacy of query results against the service provider.
Recently, Wu et al. [12] presented a novel privacy-preserving
scheme for ANN queries by integrating the dummy technique
and Paillier encryption. However, this approach has a privacy
issue in terms of the users’ real locations when a query
user launches multiple queries in a fixed location. Note that
although Yilmaz et al. [28] also proposed a privacy-preserving

optimal location selection scheme, their work is not for the
ANN query of a group considered in this paper. Moreover, it
mainly focused on the private set intersection (PSI) technique
and did not protect the location privacy of the client.

VIII. CONCLUSION

In this paper, we have proposed a privacy-preserving ag-
gregate query (PPAQ) scheme in road networks, which can
preserve the privacy of users’ locations, query results, and
access patterns. Specifically, we first analyzed the problem
of the ANN queries in road networks over plaintexts. Then,
we designed secure addition and secure comparison circuits
to securely perform addition and comparison operations in
a single-server model without leaking operands and results.
Based on these secure circuits, we proposed our PPAQ scheme
in road networks by designing a secure matching approach.
Security analysis indicated that our PPAQ scheme is indeed
privacy-preserving, and extensive performance evaluations val-
idated its efficiency. In our future work, we will further exploit
its efficiency and practically implement our proposed scheme,
such as developing the mobile application for users and ANN
query services for service providers.

ACKNOWLEDGEMENTS

This research was supported in part by NSERC Discovery
Grants (04009, 03787, RGPIN-2022-03244).

REFERENCES

[1] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group nearest
neighbor queries,” in Proceedings. 20th International Conference on
Data Engineering. IEEE, 2004, pp. 301–312.

[2] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, “Aggregate nearest
neighbor queries in spatial databases,” ACM Transactions on Database
Systems (TODS), vol. 30, no. 2, pp. 529–576, 2005.

[3] X. Lian and L. Chen, “Probabilistic group nearest neighbor queries
in uncertain databases,” IEEE Transactions on Knowledge and Data
Engineering, vol. 20, no. 6, pp. 809–824, 2008.

[4] F. Li, B. Yao, and P. Kumar, “Group enclosing queries,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 23, no. 10, pp. 1526–
1540, 2010.

[5] M. L. Yiu, N. Mamoulis, and D. Papadias, “Aggregate nearest neighbor
queries in road networks,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 6, pp. 820–833, 2005.

[6] L. Zhu, Y. Jing, W. Sun, D. Mao, and P. Liu, “Voronoi-based aggregate
nearest neighbor query processing in road networks,” in Proceedings
of the 18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2010, pp. 518–521.

[7] D. Yan, Z. Zhao, and W. Ng, “Efficient algorithms for finding optimal
meeting point on road networks,” Proceedings of the VLDB Endowment,
vol. 4, no. 11, pp. 968–979, 2011.

[8] B. Yao, Z. Chen, X. Gao, S. Shang, S. Ma, and M. Guo, “Flexible
aggregate nearest neighbor queries in road networks,” in 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE,
2018, pp. 761–772.

[9] Q. Zhao, C. Zuo, G. Pellegrino, and L. Zhiqiang, “Geo-locating drivers:
A study of sensitive data leakage in ride-hailing services.” in Annual
Network and Distributed System Security symposium, February 2019
(NDSS 2019), 2019.

[10] T. Hashem, L. Kulik, and R. Zhang, “Privacy preserving group nearest
neighbor queries,” in Proceedings of the 13th International Conference
on Extending Database Technology, 2010, pp. 489–500.

[11] M. Ashouri-Talouki, A. Baraani-Dastjerdi, and A. A. Selçuk, “Glp: A
cryptographic approach for group location privacy,” Computer Commu-
nications, vol. 35, no. 12, pp. 1527–1533, 2012.

[12] Y. Wu, K. Wang, R. Guo, Z. Zhang, D. Zhao, H. Chen, and C. Li,
“Enhanced privacy preserving group nearest neighbor search,” IEEE
Transactions on Knowledge and Data Engineering, 2019.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3174184, IEEE Internet of
Things Journal

11

[13] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: ramification, attack and mitigation.” in NDSS.
Citeseer, 2012.

[14] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and privacy-
preserving similarity range query over encrypted time series data,” IEEE
Transactions on Dependable and Secure Computing, 2021.

[15] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest
neighbor query over encrypted data in outsourced environments,” in
2014 IEEE 30th International Conference on Data Engineering. IEEE,
2014, pp. 664–675.

[16] J. Liu, J. Yang, L. Xiong, and J. Pei, “Secure skyline queries on
cloud platform,” in 2017 IEEE 33rd international conference on data
engineering (ICDE). IEEE, 2017, pp. 633–644.

[17] J. Chen, L. Liu, R. Chen, W. Peng, and X. Huang, “Secrec: A privacy-
preserving method for the context-aware recommendation system,” IEEE
Transactions on Dependable and Secure Computing, 2021.

[18] J. Brickell and V. Shmatikov, “Privacy-preserving graph algorithms in
the semi-honest model,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2005,
pp. 236–252.

[19] H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. A. Ghorbani,
“Achieving o (log3n) communication-efficient privacy-preserving range
query in fog-based iot,” IEEE Internet of Things Journal, pp. 5220–5232,
2020.

[20] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei, “Toward
privacy-preserving cybertwin-based spatio-temporal keyword query for
its in 6g era,” IEEE Internet of Things Journal, 2021.

[21] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[22] S. Jung and S. Pramanik, “An efficient path computation model for
hierarchically structured topographical road maps,” IEEE Transactions
on Knowledge and Data Engineering, vol. 14, no. 5, pp. 1029–1046,
2002.

[23] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[24] “Sequoia: locations of california,” http://chorochronos.datastories.org/?
q=node/58, 2012.

[25] R. Paulet, M. G. Kaosar, X. Yi, and E. Bertino, “Privacy-preserving
and content-protecting location based queries,” IEEE transactions on
knowledge and data engineering, vol. 26, no. 5, pp. 1200–1210, 2013.

[26] “Dimacs: locations of new york city,”
http://www.diag.uniroma1.it/challenge9/download.shtml, 2006.

[27] “Openstreetmap,” https://www.openstreetmap.org.
[28] E. Yilmaz, H. Ferhatosmanoglu, E. Ayday, and R. C. Aksoy, “Privacy-

preserving aggregate queries for optimal location selection,” IEEE
Transactions on Dependable and Secure Computing, vol. 16, no. 2, pp.
329–343, 2017.

Songnian Zhang received his M.S. degree from
Xidian University, China, in 2016 and he is cur-
rently pursuing his Ph.D. degree in the Faculty of
Computer Science, University of New Brunswick,
Canada. His research interest includes cloud com-
puting security, big data query and query privacy.

Suprio Ray (Member, IEEE) is an Associate Pro-
fessor with the Faculty of Computer Science, Uni-
versity of New Brunswick, Fredericton, Canada. He
received a Ph.D. degree from the Department of
Computer Science, University of Toronto, Canada,
in 2015. His research interests include big data
and database management systems, run-time systems
for scalable data science, provenance and privacy
issues in big data and query processing on modern
hardware. E-mail: sray@unb.ca.

Rongxing Lu (Fellow, IEEE) is Mastercard IoT
Research Chair, a University Research Scholar, an
associate professor at the Faculty of Computer Sci-
ence (FCS), University of New Brunswick (UNB),
Canada. Before that, he worked as an assistant
professor at the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity (NTU), Singapore from April 2013 to August
2016. Rongxing Lu worked as a Postdoctoral Fellow
at the University of Waterloo from May 2012 to
April 2013. He was awarded the most prestigious

“Governor General’s Gold Medal”, when he received his PhD degree from the
Department of Electrical & Computer Engineering, University of Waterloo,
Canada, in 2012; and won the 8th IEEE Communications Society (ComSoc)
Asia Pacific (AP) Outstanding Young Researcher Award, in 2013. Dr. Lu is an
IEEE Fellow. His research interests include applied cryptography, privacy en-
hancing technologies, and IoT-Big Data security and privacy. He has published
extensively in his areas of expertise, and was the recipient of 9 best (student)
paper awards from some reputable journals and conferences. Currently, Dr.
Lu serves as the Chair of IEEE ComSoc CIS-TC (Communications and
Information Security Technical Committee), and the founding Co-chair of
IEEE TEMS Blockchain and Distributed Ledgers Technologies Technical
Committee (BDLT-TC). Dr. Lu is the Winner of 2016-17 Excellence in
Teaching Award, FCS, UNB.

Yandong Zheng received her M.S. degree from the
Department of Computer Science, Beihang Univer-
sity, China, in 2017 and she is currently pursuing her
Ph.D. degree in the Faculty of Computer Science,
University of New Brunswick, Canada. Her research
interest includes cloud computing security, big data
privacy and applied privacy.

Yunguo Guan is a PhD student of the Faculty of
Computer Science, University of New Brunswick,
Canada. His research interests include applied cryp-
tography and game theory.

Jun Shao (Senior Member, IEEE) received the
Ph.D. degree from the Department of Computer
Science and Engineering, Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2008. He was a Post-
Doctoral Fellow with the School of Information
Sciences and Technology, Pennsylvania State Uni-
versity, Pennsylvania, PA, USA, from 2008 to 2010.
He is currently a Professor with the School of
Computer and Information Engineering, Zhejiang
Gongshang University, Hangzhou, China. His cur-
rent research interests include network security and

applied cryptography.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:47:15 UTC from IEEE Xplore. Restrictions apply.

